The aim of this study was to elucidate the effects of chromium (Cr) supplementation as inorganic Cr (CrCl3·6H2O) on energy balance, lipid peroxidation, and lactation performance in periparturient Murrah buffaloes. Twenty-four multiparous Murrah buffaloes according to lactation, parity, body mass, and expected calving date were divided equally. Experimental buffaloes were randomly assigned to four treatment diets: a control diet and three diets with an inorganic Cr supplementation at 0.5, 1.0, and 1.5 mg of Cr/kg dry matter (DM), respectively from 60 days before expected calving date until 60 days of lactation. Milk productions of buffaloes were recorded every day until 60 days in milk. Blood samples were collected at days -60, -45, -30,-21, -15, -7, -3, 0, 7, 15, 21, 30, 45, and 60 days relative to actual calving for determination of plasma glucose, nonesterified fatty acid (NEFA), thiobarbituric acid reactive substance (TBARS), total cholesterol, total protein, albumin, blood urea nitrogen (BUN), and minerals. Adding inorganic Cr to the diet of Murrah buffaloes increased milk yield. Percentage of fat and total solid yield increased significantly through the experiment in the Cr-supplemented group. At the day of calving, buffaloes showed a decrease in dry matter intake (DMI), plasma glucose, and zinc (Zn) and Cr concentrations. In contrast, plasma NEFA, TBARS, and copper (Cu) levels were found highest at the day of calving among all groups. Cr supplementation increased peripheral blood glucose concentration while decreased level of NEFA and TBARS was recorded in Cr-fed buffaloes. Supplemental Cr had no effect on plasma cholesterol, total protein, albumin, and BUN in periparturient period. Dietary Cr supplementation had positive effect on plasma Cr concentration, but the plasma concentration of Cu, Zn, and iron (Fe) was not affected by different dietary Cr level supplementation. The results suggest that dietary inorganic Cr supplementation improved milk yield by reducing negative energy balance and lipid peroxidation in buffaloes during periparturient period.