Induced charge electroosmotic flow is a new electric driving mode. Based on the Navier-Stokes equations and the PoissonNernst-Planck (PNP) ion transport equations, the finite volume method is adopted to calculate the equations and boundary conditions of the induced charge electroosmotic flow. In this paper, the formula of the induced zeta potential of the polarized solid surface is proposed, and a UDF program suitable for the simulation of the induced charge electroosmotic is prepared according to this theory. At the same time, on the basis of this theory, a cross micropump driven by induced charge electroosmotic flow is designed, and the voltage, electric potential, charge density, and streamline of the induced electroosmotic micropump are obtained. Studies have shown that when the cross-shaped micropump is energized, in the center of the induction electrode near the formation of a dense electric double layer, there exist four symmetrical vortices at the four corners, and they push the solution towards both outlets; it can be found that the average velocity of the solution in the cross-flow microfluidic pump is nonlinear with the applied electric field, which maybe helpful for the practical application of induced electroosmotic flow in the field of micropump.