The Mg-(4-x)Nd-xGd-0.3Sr-0.2Zn-0.4Zr (x = 0, 1, 2, and 3 wt%, Gd/Nd = 0, 1/3, 1, and 3) alloys were hot extruded and then aged (T5). The friction and wear properties of the as-extruded and as-aged alloys were studied using a ball-on-disk wear testing machine and a scanning electron microscope to reveal the impacts of the Gd/Nd ratio and aging treatment. The results show that the friction coefficient of the as-extruded alloys increases first and then decreases with increasing Gd/Nd ratio. After aging, the friction coefficient of the alloys decreases slightly. The Gd/Nd ratio has no significant effect on the wear rate of the as-extruded alloys, and the wear rate decreases first and then increases with the increase in the Gd/Nd ratio for the as-aged alloys. The T5 alloy with a Gd/Nd ratio of 1/3 has the best wear resistance. The wear mechanisms of alloys mainly include abrasive wear, oxidation wear, and delamination wear.