The purpose of this study was to determine the efficacy of tannic acid on the antioxidative function, immunity, and intestinal barrier of broilers co-infected with coccidia and Clostridium perfringens (CCP). A total of 294 1-day-old arbor acres(AA) broilers were divided into three groups: control group (CON), CCP co-infected group (CCP), and 1000 mg/kg TA + CCP co-infected group (CTA). This trial lasted for 28 days. The results showed that the CCP group decreased the activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) levels and increased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the jejunum (p < 0.05). The mRNA levels of GSH-Px3 and CAT in the liver and jejunum, and the mRNA levels of GSH-Px3, SOD, HO-1, and NAD(P)H quinone oxidoreductase I (NQO1) in the liver were down-regulated by CCP challenge (p < 0.05). In addition, the Keap1 and Nrf2 mRNA levels in the liver and jejunum, jejunal glutathione S-transferase (GST), and heme-oxygenase-1 (HO-1) were upregulated in the CCP group compared with CON (p < 0.05). The mRNA levels of interleukin 8 (IL-8), IL-1β, inducible nitric oxide synthase (iNOS), and interferon γ (IFN-γ) in the jejunum were elevated, and jejunal mRNA levels of IL-10, zonula occludens protein1 (ZO-1), claudin-1, claudin-2, and occludin were decreased in the CCP treatment (p < 0.05). Dietary supplementation with 1000 mg/kg TA increased the activity of GSH-Px, T-SOD, CAT, and T-AOC and decreased the contents of H2O2 and MDA in the jejunum (p < 0.05). Compared with the CCP group, TA decreased the mRNA level of Keap1 and Nrf2 in the liver and jejunum, increased the GSH-Px3, SOD, and CAT mRNA in the liver, and alleviated the rise of IL-8, IL-1β, iNOS, and IFN-γ and decrease in IL-10, occludin gene expression in the jejunum (p < 0.05). In conclusion, the addition of 1000 mg/kg TA to the diet improved the jejunal barrier, mitigated the jejunal inflammation, and increased the antioxidant capacity of the liver and jejunum through the activation of the transcription factor Nrf2 downstream of the Nrf2-Keap1 pathway in broilers with NE condition.