Background: Vertical jump performance depends on the take-off velocity of the body's center of mass. This velocity results from vertical acceleration provided by applied force to the ground from the feet. Therefore, forces generated in the muscles and the way these forces transfer to the feet affect vertical jump performance. Objectives: This study aimed to assess the correlation of vertical jump height with ground reaction force and anthropometric parameters of professional male athletes in volleyball, basketball, and wrestling. Methods: In this study, the descriptive method (correlation assessment) was used to investigate the relationship of countermovement vertical jump height with ground reaction force and anthropometric parameters of 18 male professional athletes. Results: This descriptive study indicated that the vertical jump height was significantly correlated with the maximum vertical force (Pearson correlation coefficient = 0.658), maximum rate of vertical force development (Pearson correlation coefficient = 0.399), negative impulse (Pearson correlation coefficient = 0.192), and positive impulse (Pearson correlation coefficient = 0.381). In addition, among 16 anthropometric parameters, only sitting height had a significant correlation with jump height (correlation coefficient = 0.499). However, the four dimensionless anthropometric parameters, including body fat mass to body mass ratio, skeletal muscle mass to body mass ratio, upper limb mass to body mass ratio, and lower limb mass to body mass ratio, were significantly correlated with vertical jump height. Conclusions: The normalized body composition and ground reaction force parameters were significantly related to vertical jump performance. Therefore, designing a training program to enhance these parameters would improve vertical jump performance. According to this study, enhancing GRF characteristics could be considered valuable in such training programs.