“…In addition to comparing the results of star cluster formation cal-E-mail: M.R.Bate@exeter.ac.uk culations to observed Galactic stellar populations, the ability to perform numerical simulations that produce clusters of stars gives us the ability to directly predict how the statistical properties of stellar systems depend on environment and initial conditions, and to investigate the roles of various physical processes. Thus far, hydrodynamical calculations that either include radiative transfer and/or radiative heating from protostars have been used to explore the dependence of stellar properties on metallicity (Myers et al 2011;Bate 2014Bate , 2019He, Ricotti & Geen 2019;Guszejnov et al 2022), molecular cloud density (Bate 2009b;Jones & Bate 2018b;Tanvir et al 2022;Guszejnov et al 2022), protostellar outflows (Krumholz, Klein & McKee 2012;Mathew & Federrath 2021;Tanvir, Krumholz & Federrath 2022;Grudić et al 2021Grudić et al , 2022Guszejnov et al 2021Guszejnov et al , 2022, variations in turbulence (Lomax, Whitworth & Hubber 2015;Nam, Federrath & Krumholz 2021;Mathew, Federrath & Seta 2022;Guszejnov et al 2022), and magnetic fields (Myers et al 2013(Myers et al , 2014Krumholz et al 2016;Cunningham et al 2018;Grudić et al 2021;Guszejnov et al 2022). Some of the most recent calculations have even begun exploring how the non-ideal magnetohydrodynamic (MHD) effects of ambipolar diffusion, Hall conduction, and Ohmic resistivity affect the formation of stellar groups, albeit only for small numbers of stars as yet (Wurster et al 2019).…”