PurposeWe determined whether the chronic lack of optic nerve myelination and subsequent axon loss is associated with optical coherence tomography (OCT) changes in the retinal nerve fiber layer (RNFL), and whether this models what occurs in multiple sclerosis (MS) and confers its use as a surrogate marker for axon degeneration.MethodsUsing an animal model of Pelizaeus-Merzbacher disease (shp) bilateral longitudinal measurements of the peripapillary RNFL (spectral-domain OCT), electroretinograms (ERG), and visual evoked potentials (VEP) were performed in affected and control animals from 5 months to 2 years and in individual animals at single time points. Light and electron microscopy of the optic nerve and retina and histomorphometric measurements of the RNFL were compared to OCT data.ResultsOf the shp animals, 17% had an average reduction of OCT RNFL thickness on the superior retinal quadrant compared to controls (P < 0.05). Electroretinograms showed normal photopic A- and B-waves but flash VEPs were disorganized in shp animals. Morphologically, the shp retinas and optic nerves revealed significant RNFL thinning (P < 0.001) without retinal ganglion cell (RGC) loss, decrease total and relative retinal axonal area, and loss of optic nerve axons. There was strong positive correlation between OCT and morphometric RNFL thickness measurements (r = 0.878, P = 0.004).ConclusionThe loss of optic nerve axons demonstrated in the shp model resulted in moderate thinning of the RNFL confirmed by OCT and histology. These results indicate that OCT-derived RNFL measurement can be a useful surrogate biomarker of optic nerve axon loss and potentially disease progression in demyelinating diseases.