2019
DOI: 10.1021/acs.inorgchem.8b03310
|View full text |Cite
|
Sign up to set email alerts
|

Effects of the Ligand Structures on the Photoelectric Activities, a Model Study Based on Titanium–Oxo Clusters Anchored with S-Heterocyclic Ligands

Abstract: Titanium oxo clusters (TOCs) have become one of the worldwide hot research topics because they are excellent molecular TiO materials having unique photoactive properties and can been used as models of dye-sensitized solar cells (DSSCs). S-Heterocyclic ligands such as thiophene (Th) and tetrathiafulvalene (TTF) derivatives have been widely used in electronic or photoelectronic devices and solar cells. However, a study of the synthesis and properties of TOCs anchored with Th and TTF derivatives is missing. Herei… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
25
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 21 publications
(25 citation statements)
references
References 42 publications
0
25
0
Order By: Relevance
“… R′′=H: R’=C 5 H 4 N, [125] ferrocenyl [140] R′′=Et: R’=Me, [132] CMe=CH 2 [133] R′′=CH=CH 2 , CH 2 CH=CH 2 : R’=Me, [132] CMe=CH 2 [133] R′′=CH 2 ‐naphthyl, CH 2 CH 2 CH 2 Cl, [132] dodecyl: [142] R’=Me R′′=CH 2 CH 2 CH 2 Br, CH 2 CH 2 CN, CH 2 C(O)Me, CH 2 CH 2 OC(O)C(Me)=CH 2 ): R’=CMe=CH 2 [133] R′′=CH 2 Ph: R’=ferrocenyl, [141] CMe=CH 2 [133] R′′=Ph: R’=Me, [143,144] Et, CH 2 Br, CH 2 CN 4 , CH 2 CF 3 , Ph, C 6 H 4 Br, C 6 H 4 Me, C 6 H 4 NO 2 , C 6 F 5 , naphthyl, [144] CMe=CH 2 , [133] O 2 C−C 6 H 4 −COO i Pr, ferrocenyl, [141] C 6 H 4 NMe 2 , C 6 H 4 CN, [145] C 5 H 4 N, [144,146] C 5 H 3 N−NH 2 , [146] C 5 H 3 N−Cl, [139] C 6 H 4 NH 2 , C 6 H 3 (NH 2 ) 2 , C 6 H 4 N=CH−C 6 H 4 NR 2 , C 6 H 3 (N=CH−C 6 H 4 NR 2 ) 2 (R=Et, Ph), [147] C 6 H 4 C(CN)=CH−C 6 H 4 NR 2 (R=Et, Ph), CH 2 CN, [20] dimethylthio‐tetrathiafulvalenyl, 3‐thienyl [19] …”
Section: Phosphonato‐substituted Titanium Oxo Clustersmentioning
confidence: 99%
See 2 more Smart Citations
“… R′′=H: R’=C 5 H 4 N, [125] ferrocenyl [140] R′′=Et: R’=Me, [132] CMe=CH 2 [133] R′′=CH=CH 2 , CH 2 CH=CH 2 : R’=Me, [132] CMe=CH 2 [133] R′′=CH 2 ‐naphthyl, CH 2 CH 2 CH 2 Cl, [132] dodecyl: [142] R’=Me R′′=CH 2 CH 2 CH 2 Br, CH 2 CH 2 CN, CH 2 C(O)Me, CH 2 CH 2 OC(O)C(Me)=CH 2 ): R’=CMe=CH 2 [133] R′′=CH 2 Ph: R’=ferrocenyl, [141] CMe=CH 2 [133] R′′=Ph: R’=Me, [143,144] Et, CH 2 Br, CH 2 CN 4 , CH 2 CF 3 , Ph, C 6 H 4 Br, C 6 H 4 Me, C 6 H 4 NO 2 , C 6 F 5 , naphthyl, [144] CMe=CH 2 , [133] O 2 C−C 6 H 4 −COO i Pr, ferrocenyl, [141] C 6 H 4 NMe 2 , C 6 H 4 CN, [145] C 5 H 4 N, [144,146] C 5 H 3 N−NH 2 , [146] C 5 H 3 N−Cl, [139] C 6 H 4 NH 2 , C 6 H 3 (NH 2 ) 2 , C 6 H 4 N=CH−C 6 H 4 NR 2 , C 6 H 3 (N=CH−C 6 H 4 NR 2 ) 2 (R=Et, Ph), [147] C 6 H 4 C(CN)=CH−C 6 H 4 NR 2 (R=Et, Ph), CH 2 CN, [20] dimethylthio‐tetrathiafulvalenyl, 3‐thienyl [19] …”
Section: Phosphonato‐substituted Titanium Oxo Clustersmentioning
confidence: 99%
“…R′′=Ph: R’=Me, [143,144] Et, CH 2 Br, CH 2 CN 4 , CH 2 CF 3 , Ph, C 6 H 4 Br, C 6 H 4 Me, C 6 H 4 NO 2 , C 6 F 5 , naphthyl, [144] CMe=CH 2 , [133] O 2 C−C 6 H 4 −COO i Pr, ferrocenyl, [141] C 6 H 4 NMe 2 , C 6 H 4 CN, [145] C 5 H 4 N, [144,146] C 5 H 3 N−NH 2 , [146] C 5 H 3 N−Cl, [139] C 6 H 4 NH 2 , C 6 H 3 (NH 2 ) 2 , C 6 H 4 N=CH−C 6 H 4 NR 2 , C 6 H 3 (N=CH−C 6 H 4 NR 2 ) 2 (R=Et, Ph), [147] C 6 H 4 C(CN)=CH−C 6 H 4 NR 2 (R=Et, Ph), CH 2 CN, [20] dimethylthio‐tetrathiafulvalenyl, 3‐thienyl [19] …”
Section: Phosphonato‐substituted Titanium Oxo Clustersmentioning
confidence: 99%
See 1 more Smart Citation
“…Note that only representative MOFs based on group 3 and 4 metals (excluding Sc and Hf) since 2018 and previous MOF milestones are listed; b) Linkers are abbreviated as: ABTC = 3,3′,5,5′-azobenzene-tetracarboxylate; AZDC = azobenzene-3,3′-dicarboxylate; ATDB = 4,4′-(4-amino-4H-1,2,4-triazole-3,5-diyl)-dibenzoate; ATPC = 4′,4′′,4′′′,4′′′′-(anthracene-9,10-diylidenebis(methan-1,1-diyl-1-ylidene))tetrabiphenyl-4-carboxylate; ATBC = 4,4′,4′′,4′′′-(anthracene-9,10-diylidenebis(methan-1,1-diyl-1-ylidene)) tetrabenzoate; BDC = terephthalate; BTTC = benzotristhiophene carboxylate; BHPB = hexakis(4-(4-carboxyphenyl)phenyl)benzoate; BDHA = benzene-1,4-dihydroxamic acid; BDB = 4,4′-(benzene-1,3-diyl)dibenzoate; BTDB = 4,4′-(benzo[c] [1,2,5]thiadiazole-4,7-diyl)dibenzoate; BTBA = 4,4′,4′′-(1H-benzo-[d]imidazole-2,4,7-triyl)tribenzoate; BPDC = biphenyl-4,4′-dicarboxylate; BPyDC = 2,2′-bipyridyl-5,5′-dicarboxylate; BTB = 1,3,5-benzenetrisbenzoate; CPTPY = 4′-(4-carboxyphenyl)-terpyridine; BTB = benzene tribenzoate; CBTB = 4,4′,4′′,4′′′-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzoate; DCDPS = 4,4′-dicarboxydiphenyl sulfone; DTPP = 5,15-di(3,4,5-trihydroxyphenyl)porphyrin; DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; EDDB = 4,4′-(ethyne-1,2-diyl)dibenzoate; FUM = fumarate; 2,6-NDC = naphthalene-2,6-dicarboxylate; HBCPB = 1,2,3,4,5,6-hexakis[3,5-bis(4-carboxyphenyl)phenoxymethyl]benzene; HCHC = hexakis(4-carboxyphenyl)hexabenzocoronene; H 6 CPB/HCBB = 1′,2′,3′,4′,5′,6′-hexakis(4carboxyphenyl)benzene; H 6 TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid; H 2 DHBQ = 2,5-dihydroxybenzoquinone; INA = isonicotinate; L-AA = L-Aspartic acid; MDIP = 3,3′,5,5′-tetracarboxydiphenylmethane; PDC = 2,5-pyridinedicarboxylate; P-2COOH = N,N′-di-(4-benzoic acid)-1,2,6,7-tetrachloroperylene-3,4,9,10-tetracarboxylic acid diimide; TCPP = meso-tetrakis(4-carboxylatephenyl)porphyrin; TTFTB = tetrathiafulvalene-tetrabenzoate; TDHT = 2,4,6-tri(3,4-dihydroxyphenyl)-1,3,5triazine; TCPC = 5,10,15-tris(p-carboxylphenyl)corrole; TBAPY = 1,3,6,8-tetrakis(p-benzoic acid)pyrene; TTFTB = tetrathiafulvalene tetrabenzoate; TPHB = 4,4′,4′′,4′′′,4′′′′,4′′′′-(triphenylene-2,3,6,7,10,11-hexayl)hexabenzoate; THPP = 5,10,15,20-tetrakis(3,4,5-trihydroxyphenyl)porphyrin); THBPP = 5,10,15,20-tetrakis(3,4,5-trihydroxybiphenyl)porphyrin; TPDC = 2′,5′-dimethyl-terphenyl-4,4′′-dicarboxylate; TTDA = 5′-(1H-tetrazol-5-yl)-1,1′:3′,1′′-terphenyl-4,4′′-dicarboxylate; TBCPB = 1,2,4,5-tetrakis [ Ti-oxo clusters are widely considered as a TiO 2 nanomaterial at a molecular level, and receive considerable attention due to their structural diversity as well as potential applications in catalysis, biomedicine and environments. [48] The number of Ti atoms in Ti-oxo clusters ranges from 3 to 32, including Ti 3 , [49][50][51][52] Ti 4 , [50,[52][53][54][55][56][57] Ti 5 , [57] Ti 6 ,…”
Section: Cluster Chemistry Of Group 3 and 4 Metalsmentioning
confidence: 99%
“…Ti–oxo clusters are widely considered as a TiO 2 nanomaterial at a molecular level, and receive considerable attention due to their structural diversity as well as potential applications in catalysis, biomedicine and environments. [ 48 ] The number of Ti atoms in Ti–oxo clusters ranges from 3 to 32, including Ti 3 , [ 49–52 ] Ti 4 , [ 50,52–57 ] Ti 5 , [ 57 ] Ti 6 , [ 51,52,54,55,57–64 ] Ti 7 , [ 57 ] Ti 8 , [ 54,64,65 ] Ti 9 , [ 51,55,63 ] Ti 10 , [ 66 ] Ti 11 , [ 54–56,63 ] Ti 12 , [ 57,62,66,67 ] Ti 14 , [ 50,56 ] Ti 16 , [ 54,55,61,66 ] Ti 18 , [ 51,57 ] Ti 19 , [ 63 ] Ti 20 , [ 66,68 ] and Ti 32 clusters. [ 69 ] In general, during the assembly of Ti–oxo clusters, it is vital to control the competition between acids and coordinating ligands.…”
Section: Cluster Chemistry Of Group 3 and 4 Metalsmentioning
confidence: 99%