Mineral reactions during CO sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this paper, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1-2 and 10-20 nm, is affected differently during the course of carbonation reactions. Initial dissolution of cement phases occurs in the 10-20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO due to reactive surface area loss. This work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.