In this study, low Mn content Fe-Mn-Si-based shape memory alloys [Fe-(17-2x) Mn-6Si-xNi-yCr-0.3C (x = 0, 1, 2, 3, 4; y = 0, 1, 3, 5)] were prepared via vacuum arc remelting. The alloys were hot-rolled and solid-solution-treated at 1150 °C for 1 h followed by aging at elevated temperatures. The effects of Cr and Ni addition on the shape memory performance and corrosion resistance of the alloys in 3.5 wt% NaCl solutions were investigated using bending test and potentiodynamic polarization, respectively. It was revealed that the recoverable strain of the alloys remains larger than 2% when 1Ni is replaced with 2Mn and Cr is added. However, it becomes less than 2% in 11Mn and 9Mn alloys because of the easy formation of the α’ martensite. The shape memory effect of alloys is highly improved due to the precipitation of fine carbides in the grains by the addition of Cr and after aging treatment at elevated temperatures (≧700 °C). The highest shape recovery ratios of 88.3% for 17Mn0Ni3Cr, 94.0% for 15Mn1Ni3Cr, 94.4% for 13Mn2Ni5Cr, 88.1% for 11Mn3Ni5Cr, and 86.8% for 9Mn4Ni7Cr, respectively, were achieved after 800 °C aging treatment. The strip-like second phase (carbides) forms at the grain boundaries in the Cr-free alloys after 600 °C aging treatment. There are lots of fine carbides (M23C6 and M7C3) precipitated in the interior of the grains at the aging treatments ≧ 700 °C. However, M7C3 is eliminated at 900 °C aging treatment. The corrosion resistance results showed that the corrosion resistance of the alloys is improved by adding Cr. The maximum corrosion potentials (−0.474 V) have been observed for 13Mn2Ni5Cr, and similar mechanisms have been analyzed in all series of alloys.