Pregnant Sprague-Dawley (CD IGS) rats were orally administered doses of bisphenol A (BPA) at 4, 40, and 400 mg/kg, from gestation days 6 to postnatal day 20. Neurotransmitters such as dopamine (DA) and serotonin (5HT) were extracted from the brains of dams and female offspring, and measured using liquid chromatography. BPA at 400 mg/kg was toxic and dosed rats died. At 3 wk after birth, brain levels of 3,4-dihydroxyphenylacetic acid (DOPAC, a DA metabolite), homovanillic acid (HVA, a DA metabolite), 5HT, 5-hydroxyindoleacetic acid (5HIAA, a 5HT metabolite) in female offspring were increased and the HVA/DA ratio was high in some brain areas of BPA-treated groups as compared with controls. At the age of 6 wk, levels of choline (Ch) in BPAtreated groups at 4 and 40 mg/kg were higher than control in all of eight brain areas. No changes were observed in acetylcholine (ACh) contents. In 9-wk-old offspring, changes in monoamines and metabolites were scattered and not great. At 3 wk after delivery, levels of 5HIAA in some brain areas of dams treated with BPA were higher than in control dams. Dose dependent increases in HVA and the HVA/DA ratio of the occipital cortex, and in the HVA/DA ratio of the frontal cortex were observed. The turnover of DA and 5HT was accelerated in 3-wk-old offspring and dams. BPA possesses very weak estrogenic activity. Changes in cerebral neurotransmitters observed in offspring and dams in this study may have been related to the estrogenic activity of BPA. However, further investigation is needed to examine the contribution of hormonal activity to such neurotransmitter changes.