Although there have been several studies conducted exploring the factors affecting injury severity in tunnel crashes, most studies have focused on identifying factors that directly influence injury severity. In particular, variables related to crash characteristics and tunnel characteristics affect the injury severity, but the inconvenient driving environment in a tunnel space, characterized by narrow space and dark lighting, can affect crash characteristics such as secondary collisions, which in turn can affect the injury severity. Moreover, studies on secondary collisions in freeway tunnels are very limited. The objective of this study was to explore factors affecting injury severity with the consideration of secondary collisions in freeway tunnel crashes. To account for complex relationships between multiple exogenous variables and endogenous variables by considering the direct and indirect relationships between them, this study used a structural equation modeling with tunnel crash data obtained from Korean freeway tunnels from 2013 to 2017. Moreover, based on high-definition closed-circuit televisions installed every 250 m to monitor incidents in Korean freeway tunnels, this study utilized unique crash characteristics such as secondary collisions. As a result, we found that tunnel characteristics indirectly affected injury severity through crash characteristics. In addition, one variable regarding crashes involving drivers younger than 40 years old was associated with decreased injury severity. By contrast, ten variables exhibited a higher likelihood of severe injuries: crashes by male drivers, crashes by trucks, crashes in March, crashes under sunny weather conditions, crashes on dry surface conditions, crashes in interior zones, crashes in wider tunnels, crashes in longer tunnels, rear-end collisions, and secondary collisions with other vehicles.