Boundary‐layer forced convection flow of a Casson fluid past a symmetric wedge is investigated. Similarity transformations are used to convert the governing partial differential equations to ordinary ones and the reduced equations are then solved numerically with the help of the shooting method. Comparisons with various previously published works on special cases are performed and the results are found to be in excellent agreement. A representative set of graphical results is obtained and illustrated graphically. The velocity is found to increase with an increasing Falkner–Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. The skin friction decreases with increasing values of the Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with increasing values of the Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(8): 665–675, 2013; Published online in Wiley Online Library (http://wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21065