Biochar and nitrogen fertilizers are known to increase soil carbon storage and reduce soil nitrogen loss as amendments, suggesting a promising strategy for highly effectively increasing soil productivity. However, few studies have explored the mechanisms of their effects on crop yield in terms of active carbon fraction and enzyme activity, which ultimately limits the potential for the application of biochar in combination with nitrogen fertilizers. To evaluate the effect of biochar and nitrogen fertilizer on the improvement of black soils in northeast China, a field experiment was conducted in the black soil to compare and analyze the application methods on total organic carbon (TOC), total nitrogen (TN), enzyme activities, and maize yields. Biochar rates: CK, C1, C2, and C3 (0, 9.8, 19.6, and 29.4 Mg·ha−1); N fertilizer rates: N1/2 and N (30 and 60 kg·ha−1). Results indicated that biochar and N fertilizer amendments significantly ameliorated soil fertility, such as TOC and TN, compared to the unamended soil. The TOC levels in the C3 treatment increased by 35.18% and the TN levels by 23.95%. The improvement in TN is more significant when biochar is blended with N fertilizer. Biochar blended with N fertilizer increased maize cellulase, urease, and invertase activities by an average of 53.12%, 58.13%, and 16.54%, respectively. Redundancy analysis showed that TOC, TN, and MBN contributed 42%, 16.2%, and 22.2%, respectively, to the maize yield indicator. Principal component analysis showed that reduced N fertilizer was more effective in improving yields, with a maximum yield increase of 50.74%. Biochar blended with N fertilizer is an effective strategy to improve the fertility and productivity of black soils in northeast China, while nitrogen fertilizer reduction is feasible and necessary for maintaining grain yield.