Climate change, with warming temperatures and shifting precipitation patterns, may increase natural-caused forest fire activity. Increasing natural-caused fires throughout western United States national forests could place people, property, and infrastructure at risk in the future. We used the fine K nearest neighbor (KNN) method coupled with the downscaled Multivariate Adaptive Constructed Analogs (MACA) climate dataset to estimate changes in the rate of natural-caused fires in western United States national forests. We projected changes in the rate of minor and major forest fires from historical (1986–2015) to future (2070–2099) conditions to characterize fire-prone national forests under a range of climate change scenarios. The results indicate that climate change can add to the occurrence of forest fires in western United States national forests, particularly in Rocky Mountain, Pacific Southwest, and Southwestern United States Forest Service regions. Although summer months are projected to have the highest rate of natural-caused forest fire activity in the future, the rate of natural-caused forest fires is likely to increase from August to December in the future compared to the historical conditions. Improved understanding of altered forest fire regimes can help forest managers to better understand the potential effects of climate change on future fire activity and implement actions to attenuate possible negative consequences.