Various cardenolide genins and cardenolide glycosides were administered to light-grown and dark-grown Digitalis lanata shoot cultures to investigate conversion reactions related to the formation and rearrangement of the sugar side chain of Digitalis glycosides. Digitoxigenin was converted to digitoxigen-3-one, 3-epidigitoxigenin, and digoxigenin. In addition, various cardiac glycosides were formed, including mono-glycosides with glucose, glucomethylose, fucose, and digitalose, as well as the corresponding diglycosides, all containing a terminal glucose. Digitoxosylated cardenolides were not formed, although the light-grown shoot cultures were capable of producing these compounds. Exogenous cardenolide fucosides were not converted into cardenolide digitoxosides. Administration of evatromonoside (digitoxigenin monodigitoxoside) did not force the formation of cardenolide di- or tridigitoxosides. Our results support the hypothesis that cardenolide fucosides and digitoxosides are formed via different biosynthetic routes and that cardenolide genins can be fucosylated but not digitoxosylated, indicating that digitoxosylation may only occur at an earlier stage in the cardenolide pathway.