Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Systems offering fault-resilient, energy-efficient, soft real-time data communication have wide applications in Industrial Internet-of-Things (IIoT). While there have been extensive studies for fault resilience in real-time embedded systems, investigations from cyber-physical systems (CPS) perspective are still much needed, as CPS faults occur not just from abnormal conditions in the software/hardware of the system, but also from the physical environment in which the system operates. At the same time, in addition to conventional fault tolerance strategies embedded in the software/hardware of the target system, CPS faults could be mitigated via some strategic systems re-configuration made available by the physical environment. This paper presents a design and implementation for CPS fault-resilient data communication, in the context of IIoT networks running LoRaWAN, a low-power wide-area networking standard. The proposed design combines collaborative IIoT end devices plus a network gateway piggybacked on a third-party cruising object that is part of the environment. With the focus on data communication, the study illustrates challenges and opportunities to address CPS fault resilience while meeting the needs for energy efficiency and communication timeliness that are common to IIoT systems. The implementation of the design is based on ChirpStack, a widely used open source framework for LoRaWAN. The results from experiment and simulation both show that the proposed scheme can tolerate limited errors of data communication while saving operating energy and maintaining timeliness of data communication to some extent.
Systems offering fault-resilient, energy-efficient, soft real-time data communication have wide applications in Industrial Internet-of-Things (IIoT). While there have been extensive studies for fault resilience in real-time embedded systems, investigations from cyber-physical systems (CPS) perspective are still much needed, as CPS faults occur not just from abnormal conditions in the software/hardware of the system, but also from the physical environment in which the system operates. At the same time, in addition to conventional fault tolerance strategies embedded in the software/hardware of the target system, CPS faults could be mitigated via some strategic systems re-configuration made available by the physical environment. This paper presents a design and implementation for CPS fault-resilient data communication, in the context of IIoT networks running LoRaWAN, a low-power wide-area networking standard. The proposed design combines collaborative IIoT end devices plus a network gateway piggybacked on a third-party cruising object that is part of the environment. With the focus on data communication, the study illustrates challenges and opportunities to address CPS fault resilience while meeting the needs for energy efficiency and communication timeliness that are common to IIoT systems. The implementation of the design is based on ChirpStack, a widely used open source framework for LoRaWAN. The results from experiment and simulation both show that the proposed scheme can tolerate limited errors of data communication while saving operating energy and maintaining timeliness of data communication to some extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.