Sedimentologic, oceanographic, and hydraulic engineering publications on hyperpycnal flows claim that (1) river flows transform into turbidity currents at plunge points near the shoreline, (2) hyperpycnal flows have the power to erode the seafloor and cause submarine canyons, and, (3) hyperpycnal flows are efficient in transporting sand across the shelf and can deliver sediments into the deep sea for developing submarine fans. Importantly, these claims do have economic implications for the petroleum industry for predicting sandy reservoirs in deep-water petroleum exploration. However, these claims are based strictly on experimental or theoretical basis, without the supporting empirical data from modern depositional systems. Therefore, the primary purpose of this article is to rigorously evaluate the merits of these claims. A global evaluation of density plumes, based on 26 case studies (e.g., Yellow River, Yangtze River, Copper River, Hugli River (Ganges), Guadalquivir River, Río de la Plata Estuary, Zambezi River, among others), suggests a complex variability in nature. Real-world examples show that density plumes (1) occur in six different environments (i.e., marine, lacustrine, estuarine, lagoon, bay, and reef); (2) are composed of six different compositional materials (e.g., siliciclastic, calciclastic, planktonic, etc.); (3) derive material from 11 different sources (e.g., river flood, tidal estuary, subglacial, etc.); (4) are subjected to 15 different external controls (e.g., tidal shear fronts, ocean currents, cyclones, tsunamis, etc.); and, (5) exhibit 24 configurations (e.g., lobate, coalescing, linear, swirly, U-Turn, anastomosing, etc.). Major problem areas are: (1) There are at least 16 types of hyperpycnal flows (e.g., density flow, underflow, high-density hyperpycnal plume, high-turbid mass flow, tide-modulated hyperpycnal flow, cyclone-induced hyperpycnal turbidity current, multi-layer hyperpycnal flows, etc.), without an underpinning principle of fluid dynamics. (2) The basic tenet that river currents transform into turbidity currents at plunge points near the shoreline is based on an experiment that used fresh tap water as a standing body. In attempting to understand all density plumes, such an experimental result is inapplicable to marine waters (sea or ocean) with a higher density due to salt content. (3) Published velocity measurements from the Yellow River mouth, a classic area, are of tidal currents, not of hyperpycnal flows. Importantly, the presence of tidal shear front at the Yellow River mouth limits seaward transport of sediments. (4) Despite its popularity, the hyperpycnite facies model has not been validated by laboratory experiments or by real-world empirical field data from modern settings. (5) The presence of an erosional surface within a single hyperpycnite depositional unit is antithetical to the basic principles of stratigraphy. (6) The hypothetical model of "extrabasinal turbidites", deposited by river-flood triggered hyperpycnal flows, is untenable. This is because high-densit...