The structure and dielectric properties of Barium Zinc Tantalate (BZT) doped by copper oxide (CuO) with a variety of values of mol% doping from 0, 0.1, 0.25, 1.0, 1.5 and 2.5 were prepared using a solid state method. The addition of CuO did not disturb the 1:2 ordering structure of the BZT ceramic. The grain size increased when the addition of doping increased. A small amount of doping elements increased the relative density. The dielectric constant (ɛr) value of the BZT significantly improved with the addition of the CuO for the specimens sintered at 1250°C and it could be explained by the increase of the relative density. The tan δ of the CuO doped with BZT ceramics is lower than pure BZT ceramics, and decreases as the CuO content increases. Meanwhile, for the percentage of bandwidth (%BW) it is shown that the best result is produced when it is doped with 0.25 mol% CuO and sintered at 1250°C. The best microwave dielectric properties obtained were ɛr=70.28, tan δ = 0.024, %BW = 7.83 which occurred for the 0.25 mol% doped CuO and when sintered at 1250°C/4 h.