RLIP acts as a transporter that responds to stress and provides protection, specifically against glutathione-electrophile conjugates and xenobiotic toxins. Its increased presence in malignant cells, especially in cancer, emphasizes its crucial anti-apoptotic function. This is achieved by selectively regulating the cellular levels of pro-apoptotic oxidized lipid byproducts. Suppressing the progression of tumors in human xenografts can be achieved by effectively inhibiting RLIP, a transporter in the mercapturic acid pathway, without involving chemotherapy. Utilizing ovarian cancer (OC) cell lines (MDAH2774, OVCAR4, and OVCAR8), we observed that agents targeting RLIP, such as RLIP antisense and RLIP antibodies, not only substantially impeded the viability of OC cells but also remarkably increased their sensitivity to carboplatin. To delve further into the cytotoxic synergy between RLIP antisense, RLIP antibodies, and carboplatin, we conducted investigations in both cell culture and xenografts of OC cells. The outcomes revealed that RLIP depletion via phosphorothioate antisense led to rapid and sustained remissions in established subcutaneous human ovary xenografts. Furthermore, RLIP inhibition by RLIP antibodies exhibited comparable efficacy to antisense and enhanced the effectiveness of carboplatin in MDAH2774 OC xenografts. These investigations underscore RLIP as a central carrier crucial for supporting the survival of cancer cells, positioning it as a suitable focus for cancer treatment.