In light of sustainable development goals for 2030, an important priority for Africa is to have affordable, accessible and sustainable hepatitis B virus (HBV) prevention of mother to child transmission (PMTCT) programmes, delivering screening and treatment for antenatal women and implementing timely administration of HBV vaccine for their babies. We developed a decision-analytic model simulating 10,000 singleton pregnancies to assess the cost-effectiveness of three possible strategies for deployment of tenofovir in pregnancy, in combination with routine infant vaccination: S1: no screening nor antiviral therapy; S2: screening and antiviral prophylaxis for all women who test HBsAg-positive; S3: screening for HBsAg, followed by HBeAg testing and antiviral prophylaxis for women who are HBsAg-positive and HBeAg-positive. Our outcome was cost per infant HBV infection avoided and the analysis followed a healthcare perspective. S1 predicts 45 infants would be HBV-infected at six months of age, compared to 21 and 28 infants in S2 and S3, respectively. Relative to S1, S2 had an incremental cost of $3,940 per infection avoided. S3 led to more infections and higher costs. Given the long-term health burden for individuals and economic burden for society associated with chronic HBV infection, screening pregnant women and providing tenofovir for all who test HBsAg+ may be a cost-effective strategy for South Africa.