Fossils are valuable indicators of the evolutionary history of the clades to which they belong to, especially when they are incorporated as terminal taxa in a total‐evidence phylogeny. According to their state of preservation, fossils are often incompletely described for key morphological characters, such as genitalic structures. Here, the internal parts of the genitalia of a male fossil cricket from Cretaceous amber, †Picogryllus carentonensis Josse & Desutter‐Grandcolas (Oecanthidae, Podoscirtinae), together with other key morphological characters (i.e., metanotal structures and tibial spurs), were reconstructed for the first time by 3D microtomography. Total‐evidence phylogeny and dating combining morphological data (fossils and extant taxa), molecular data (extant taxa only) and time calibration (fossil dates) were performed to evaluate the tempo and mode of evolution of the cricket family Oecanthidae. Divergence time estimates were thus refined and the patterns of transformation for key morphological structures contrasted through the analysis of phylogenetic morphological partitions. Our results show that Oecanthidae date back to the Upper Jurassic (Oxfordian, around 162 Ma) and attest to the presence of the Podoscirtinae in Western Europe during the Lower Cretaceous. Morphological evolution may have been driven by the conquest of new resources (as shown by leg evolution in ancestral Oecanthidae) and/or the ‘conquest of silence’ (as shown by repetitive and definitive losses of acoustic structures). By contrast, genitalia evolution proved more diffuse.