Working memory is vital for short-term information processing. Binaural beats can enhance working memory by improving attention and memory consolidation through neural synchronization. However, individual differences in cognitive and neuronal functioning affect effectiveness of binaural beats, necessitating personalized approaches. This study aimed to develop a machine learning model to predict binaural beats’s effectiveness on working memory using electroencephalography. Sixty healthy participants underwent a 5-min electroencephalography recording, an initial working memory evaluation, 15 min of binaural beats stimulation, and a subsequent working memory evaluation using digit span tests of increasing difficulty. Recall accuracy and response times were measured. Differential scores from pre-evaluation and post-evaluation labeled participants as active or inactive to binaural beats stimulation. electroencephalography data, recorded using 14 electrodes, provided brain activity estimates across theta, alpha, beta, and gamma frequency bands, resulting in 56 features (14 channels × 4 bands) for the machine learning model. Several classifiers were tested to identify the most effective model. The weighted K-nearest neighbors model achieved the highest accuracy (90.0%) and area under the receiver operating characteristic curve (92.24%). Frontal and parietal electroencephalography channels in theta and alpha bands were crucial for classification. This study’s findings offer significant clinical insights, enabling informed interventions and preventing resource inefficiency.