Objectives-Homogenous distribution of cardioplegia delivered to the myocardium has been identified as an important predictor of post-cardiopulmonary bypass ventricular recovery and function. Presently, a method to determine adequate distribution of cardioplegia in patients during cardiac surgery does not exist. The goal of this study was to evaluate the feasibility of quantifying cardioplegia delivery using a novel, non-invasive optical method. Such a system would permit instantaneous imaging of jeopardized myocardium and allow immediate, intraoperative corrective measures.Methods-We have previously developed a portable, intraoperative near-infrared (NIR) fluorescence imaging system for use in large animal cardiac surgery, which simultaneously displays color video and NIR fluorescent images of the surgical field. By introducing exogenous, non-isotopic NIR fluorophores, specific cardiac functions can be visualized in real-time.Results-In a cardiopulmonary bypass porcine model, we demonstrate that the FDA-approved intravascular fluorophore indocyanine green (ICG) permits real-time assessment of cardioplegia delivery. ICG was injected into an aortic root and/or transatrial coronary sinus catheter during delivery of cold crystalloid cardioplegia solution. Segmental distribution was immediately noted at the time of injection. In a subset of animals, simulated coronary occlusions resulted in imaging defects consistent with poor cardioplegia delivery and jeopardized myocardium. Videodensitometric analysis was performed on-line to quantify right and left ventricular (RV, LV) distribution.Conclusions-We report the development of a novel, non-invasive, intraoperative technique which can easily and safely provide a visual assessment of cardioplegia delivery (antegrade and/or retrograde) and which offers the potential to quantify the relative segmental distribution during cardiac surgical procedures.ULTRAMINI ABSTRACT-Intraoperative near-infrared fluorescence imaging is a novel, noninvasive technique that can safely and easily visualize and quantify cardioplegia distribution during cardiac surgery. This system should permit surgeons to identify regions of poor myocardial protection, and guide interventions, intraoperatively and in real-time.