Background: Antibiotic resistance is a major health hazard around the globe. Hypervirulent Klebsiella Pneumoniae (hvKp) is associated with hospital-acquired and community-acquired infections. Since there is a lack of new antibiotics against multidrug-resistant (MDR) pathogens, phage therapy might provide an alternative approach to confer antibiotic resistance. Objectives: This study aimed to estimate the occurrence of hvKp and characterize the bacteriophage against the hvKp prevalence in clinical settings, which might be used as an alternative to antibiotics. Methods: Different clinical samples (n = 50) were collected to isolate K. pneumoniae, and the assessment of multidrug resistance was carried out based on the Clinical and Laboratory Standards Institute guidelines (2020). The bacteriophage was isolated from hospital waste, and the double agar overlay method was used for phage purification and propagation. Spot test and one-step curve were performed to determine host-phage interactions. For the evaluation of phage stability in environmental conditions, the phage was incubated at various ranges of temperature, pH, and chloroform. Results: Out of the collected samples, 22 (44%) isolates were confirmed as K. pneumoniae. Among confirmed K. pneumoniae isolates, a total of 11 (50%) isolates were detected as hvKp. Moreover, 14 (64%) isolates were detected as MDR, out of which 5 (35%) isolates were among hvKp phenotypes. Maximum resistance was observed against ampicillin (86%) followed by ceftriaxone (81%) which was the highest among cephalosporins. The isolated bacteriophage showed a broad host range, short latent period, and stability. Overall, 16 isolates (85%) of K. pneumoniae were susceptible to phage infection, among which 12 isolates were MDR (75%); however, all 5 (100%) hvKp isolates were susceptible to phage infection. One-step growth analysis revealed a burst size of 190 phages/host bacterial cells with a short latent period of 24 minutes. Conclusions: Altogether, the significant prevalence of hvKp was estimated in clinical settings, and the isolated bacteriophage showed significant lytic activity as it killed all the hvKp strains. Phage therapy might be exploited and used as a potential alternative therapeutic approach against infections caused by this resistant pathogen.