Background: Foot pathologies can affect the kinetic chain during gait, leading to altered loading at other joints that can lead to subsequent pathologies. Although hallux valgus is the most common foot disease, little has been discussed about the biokinetic effects of hallux valgus on the foot and lower limb. This systematic review evaluated the kinematic, kinetic, and pedobarographic changes of the hallux valgus foot compared to a healthy one. Methods: Several electronic databases were searched up to January 2022, including only cross-sectional studies with clearly defined isolated hallux valgus diseases and healthy groups. Two investigators independently rated studies for methodological quality using the NIH Study Quality Assessment Tool for cross-sectional studies. Kinetic data were extracted, including temporal data, kinematics of the foot joint, kinematics of the proximal lower limb, and pedobarography. We did meta-analyses tests with a random effects model using the metafor package in R. Results: Hallux valgus patients walk slower compared to a disease-free control group −0.16 m/s (95% CI −0.27, −0.05). Hallux valgus patients exhibited significantly reduced coronal plane motion of the hindfoot-shank during preswing 1.16 degrees (95% CI 0.31, 2.00). Hallux valgus patients generated less force in the hallux region 33.48 N (95% CI 8.62, 58.35) but similar peak pressures in the hallux compared to controls. Hallux valgus patients generated less peak pressure at the medial and lateral hindfoot as compared to controls: 8.28 kPa (95% CI 2.92, 13.64) and 8.54 kPa (95% CI 3.55, 13.52), respectively. Conclusion: Although hallux valgus is a deformity of the forefoot, the kinematic changes due to the pathology are associated with significant changes in the range of motion at other joints, underscoring its importance in the kinetic chain. This is demonstrated again with the changes of peak pressure. Nevertheless, more high-quality studies are still needed to develop a fuller understanding of this pathology.