In many parts of North America, deer (Odocoileus spp.) have adapted to live in urban areas and are a source of negative human-wildlife interactions. Management strategies such as culling, immunocontraceptives, sterilization, and translocation have been implemented to manage urban deer populations. In the East Kootenay region of southern British Columbia, urban mule deer (Odocoileus hemionus) populations have been increasing, whereas non-urban mule deer populations have decreased. In 2014 a non-urban mule deer research project began in the area and in 2016 an urban deer translocation trial was approved in the same region. We fit 121 non-urban deer with global positioning system (GPS)-collars and translocated 135 urban mule deer to non-urban areas, of which 57 were fit with GPS-collars. We tested if annual survival between urban translocated (i.e., translocated) and non-urban deer differed, and if translocated deer survival increased in subsequent years after translocation. We also determined if age, body condition, release site, capture area and distance between capture and release sites affected translocated deer survival. We evaluated if translocated deer exhibited different movement behaviors than non-urban deer by comparing probability of migration, maximum net displacement, home range size, and probability of crossing a paved road. Finally, during our study we observed some translocated deer return to a municipal area after translocation and assessed if any covariates such as age, release site, or capture city could help predict this behavior. Annual survival of translocated deer was 0.48 and was significantly lower than survival of non-urban deer, which was 0.77. We observed 20 of 57 collared translocated deer return to a town after translocation. Translocated deer had larger net displacements and larger seasonal home range sizes than non-urban deer. Non-urban deer were more likely to migrate than translocated deer and crossed fewer paved roads than translocated deer. The management effectiveness of translocation to reduce urban deer densities is mixed because annual survival of translocated deer may be lower than may be acceptable to some stakeholders. Additionally, some translocated deer returned to an urban area, and the large distances traveled by deer after translocation may unintentionally spread disease.