While many efforts have been devoted to optimizing the power output for a finite-time thermodynamic process, thermodynamic optimization under realistic situations is not necessarily concerned with power alone; rather, it may be of great relevance to optimize generic objective functions that are combinations of power, entropy production, and/or efficiency. One can optimize the objective function for a given model; generally the obtained results are strongly model dependent. However, if the thermodynamic process in question is operated in the linear response regime, then we show in this work that it is possible to adopt a unified approach to optimizing the objective function, thanks to Onsager's theory of linear irreversible thermodynamics. A dissipation bound is derived, and based on it, the efficiency associated with the optimization problem, which is universal in the linear response regime and irrespective of model details, can be obtained in a unified way. Our results are in good agreement with previous findings. Moreover, we unveil that the ratio between the stopping time of a finite-time process and the optimized duration time plays a pivotal role in determining the corresponding efficiency in the case of linear response.