Visible light can be converted into electricity using dye sensitised solar cells (DSSCs), with their performance mainly based on the type of dye used as a sensitiser. Currently, dyes extracted from natural sources are highly preferred by researchers in this field. Natural dyes reduce the high cost of metal complex sensitisers and replace expensive processes of chemical synthesis with simple extraction processes. Natural dyes are environmentally friendly, abundant, easily extractable, and safe. Their application has become a promising development in DSSC technology. In this study, two natural dyes extracted from the plant leaves of green cabbage (GC) and red cabbage (RC) that were used as sensitisers. The performance characteristics of RC and GC extracts were investigated using both cyclic voltammetry and amperometry methods for solar cell detection. At an extraction temperature of 60 °C maintained for 8 h under optimum conditions, the measured values of maximum power (Pm), fill factor (FF), and efficiency (η) were 1.36 mW/cm2, 92.34%, and 0.161% for RC, and 0.349 mW/cm2, 44.19%, and 0.095% for GC, respectively. The RC and GC extracts exhibited excellent electrochemical performance with respect to current density potential and good cycling stability.