Efficiency of recurrent neural networks for seasonal trended time series modelling
Rida El Abassi,
Jaafar Idrais,
Abderrahim Sabour
Abstract:Seasonal time series with trends are the most common data sets used in forecasting. This work focuses on the automatic processing of a non-pre-processed time series by studying the efficiency of recurrent neural networks (RNN), in particular both long short-term memory (LSTM), and bidirectional long short-term memory (Bi-LSTM) extensions, for modelling seasonal time series with trend. For this purpose, we are interested in the learning stability of the established systems using the mean average percentage erro… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.