Leaf nitrogen (N) and phosphorus (P) are the most important functional traits in plants which affect biogeochemical cycles. As the most widely observed plant–fungus mutualistic symbiosis, mycorrhiza plays a vital role in regulating plant growth. There are different types of mycorrhiza with various ecological functions in nature. Drought, as a frequent environmental stress, has been paid more and more attention due to its influence on plant growth. Numerous studies have confirmed that drought affects the concentration of N and P in plants, but few studies involve different mycorrhizal types of plants. In this study, the differences of N and P between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants under different drought patterns, drought duration and cultivation conditions were explored based on a dataset by a meta-analysis. Drought stress (DS) showed negative effects on AM plant N (−7.15%) and AM plant P (−13.87%), and a positive effect on AM plant N:P ratio (+8.01%). Drought significantly increased N and the N:P ratio of ECM plants by 1.58% and 3.58%, respectively, and decreased P of ECM plants by −2.00%. Short-term drought (<30 d) reduces more N and P than long-term drought (<30 d) in AM plant species. The duration of drought did not change the N concentration of ECM plant N, while short-term drought reduced ECM plant P. The effects of N and P on DS also varied with different planting conditions and functional groups between AM and ECM plants. Therefore, mycorrhizal effects and stoichiometry of N and P play a key role in plant response to drought. So mycorrhizal effects should be considered when studying plant responses to drought stress.