Water pollution is one of the main challenges currently facing scientists around the world because of the rapid growth in industrial activities. On this basis, 2D nanolayered and nanohybrid structures, which are based on a ternary system of nickel–titanium–zinc, are considered favorable sources for designing effective nanocomposites for the photocatalytic degradation of industrial pollutants in a short period of time. These nanocomposites were designed by modifying two-dimensional nanolayers to produce a three-dimensional porous structure of multi-doped Ni/Ti-ZnO nanocomposites. Additionally, another additive was produced by constructing nanohybrids of nickel–titanium–zinc combined with a series of hydrocarbons (n-capric acid, myristic acid, stearic acid, suberic acid, and sebacic acid). Energy-dispersive X-ray spectrometry, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analyses confirmed the growth of the nanolayered and nanohybrid materials in addition to the production of nanocomposites. The positive role of the dopants (nickel and titanium) in producing an effective photocatalyst was observed through a significant narrowing of the band gap of zinc oxide to 3.05–3.10 eV. Additionally, the high photocatalytic activity of this nanocomposite enabled the complete removal of colored dye from water after 25 min of UV radiation. In conclusion, this study proposes an unconventional approach for designing new optical nanocomposites for purifying water. Additionally, it suggests a novel supporting method for designing new kinds of nanohybrids based on multi-metals and organic acids.