Abstract-We study pulse propagation in Er 3+ -doped fiber amplifiers (EDFA) within the framework of a spectrally resolved pulse rate-propagation equations model. Our model accounts for the effects of gain dispersion, gain saturation, waveguide and chromatic dispersion, and amplified spontaneous emission. This model allows us to approximate the effects of nonlinear resonant dispersion on short pulse amplification in doped fibers, without reverting to the generalized nonlinear Schroedinger equation. Numerical results of the time-dependent power spectrum of the amplified pulse demonstrate subpicosecond pulse propagation in EDFAs.Index Terms-Erbium (Er), optical fiber amplifiers, optical fiber dispersion, optical pulse amplifiers.