1,2-Butanediol (1,2-BDO) is an important platform chemical widely utilized in the synthesis of polyester polyols, plasticizers, cosmetics, and pharmaceuticals. However, no natural metabolic pathway for its biosynthesis has been identified, and biological production of 1,2-BDO from renewable bioresources has not been reported so far. In this study, we designed and experimentally verified a feasible non-natural synthesis pathway for the de novo production of 1,2-BDO from renewable carbohydrates for the first time. This pathway extends the Lthreonine synthesis pathway by introducing two artificial metabolic modules to sequentially convert L-threonine into 2-hydroxybutyric acid and 1,2-BDO. Following key enzyme screening and enhancement of L-threonine synthesis module in the chassis microorganism, the best engineered Escherichia coli strain was able to produce 0.15 g/L 1,2-BDO using glucose as the sole carbon source. This work lays the foundation for the bioproduction of 1,2-BDO from renewable resources.