2023
DOI: 10.3390/cryst13050736
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Activation and High Mobility of Ion-Implanted Silicon for Next-Generation GaN Devices

Abstract: Selective area doping via ion implantation is crucial to the implementation of most modern devices and the provision of reasonable device design latitude for optimization. Herein, we report highly effective silicon ion implant activation in GaN via Symmetrical Multicycle Rapid Thermal Annealing (SMRTA) at peak temperatures of 1450 to 1530 °C, producing a mobility of up to 137 cm2/Vs at 300K with a 57% activation efficiency for a 300 nm thick 1 × 1019 cm−3 box implant profile. Doping activation efficiency and m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 34 publications
0
1
0
Order By: Relevance
“…The recent focus of advanced contact processes is generally driven by CMOS-compatible, Au-free, and/or low-temperature budget ohmic contacts, [8][9][10][11][12] or n-GaN regrowth for highlyscaled AlGaN 5) or novel Al(Sc)N-based HEMTs [13][14][15] with high Al-content. The fabrication of highly n-type doped GaN films was demonstrated via Si implantation, 13,16,17) MBE, [18][19][20][21] MOCVD [22][23][24][25][26] (Si or Ge), pulsed laser deposition (PLD) 27) and reactive, pulsed sputtering (PVD) from a solid Ga target. 15,[28][29][30][31] Si implantation is used for GaN-devices but faces issues to achieve carrier densities and requires a high-temperature treatment to recover for the implantation damage.…”
mentioning
confidence: 99%
“…The recent focus of advanced contact processes is generally driven by CMOS-compatible, Au-free, and/or low-temperature budget ohmic contacts, [8][9][10][11][12] or n-GaN regrowth for highlyscaled AlGaN 5) or novel Al(Sc)N-based HEMTs [13][14][15] with high Al-content. The fabrication of highly n-type doped GaN films was demonstrated via Si implantation, 13,16,17) MBE, [18][19][20][21] MOCVD [22][23][24][25][26] (Si or Ge), pulsed laser deposition (PLD) 27) and reactive, pulsed sputtering (PVD) from a solid Ga target. 15,[28][29][30][31] Si implantation is used for GaN-devices but faces issues to achieve carrier densities and requires a high-temperature treatment to recover for the implantation damage.…”
mentioning
confidence: 99%