In this paper, a problem of efficient image sampling (deployment of image sensors) is considered. This problem is solved using techniques of two-dimensional quantization in polar coordinates, taking into account human visual system (HVS) and eye sensitivity function. The optimal radial compression function for polar quantization is derived. Optimization of the number of the phase levels for each amplitude level is done. Using optimal radial compression function and optimal number of phase levels for each amplitude level, optimal polar quantization is defined. Using deployment of quantization cells for the optimal polar quantization, deployment of image sensors is done, and therefore optimal polar image sampling is obtained. It is shown that our solution (the optimal polar sampling) has many advantages compared to presently used solutions, based on the log-polar sampling. The optimal polar sampling gives higher SNR (signal-to-noise ratio), compared to the log-polar sampling, for the same number of sensors. Also, the optimal polar sampling needs smaller number of sensors, to achieve the same SNR, compared to the log-polar sampling. Furthermore, with the optimal polar sampling, points in the image middle can be sampled, which is not valid for the log-polar sampling. This is very important since human eye is the most sensitive to these points, and therefore the optimal polar sampling gives better subjective quality.