2002
DOI: 10.1061/(asce)0733-9437(2002)128:6(351)
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Algorithm for Gradually Varied Flows in Channel Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
34
0
5

Year Published

2008
2008
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(39 citation statements)
references
References 13 publications
0
34
0
5
Order By: Relevance
“…The literature with these two methods is vast, but a reasonable cross section is provided in Table 1. Beyond these two major families, a variety of other schemes have been applied including finiteelement methods (e.g., Szymkiewicz, 1991;Venutelli, 2003), finite-volume methods that do not use the Godunov approach (e.g., Audusse et al, 2004Audusse et al, , 2016Catella et al, 2008;Katsaounis et al, 2004;Mohamed, 2014;Vazquez-Cendon, 1999;Xing and Shu, 2011;Ying et al, 2004), and finitedifference methods that do not apply the Preissmann scheme (e.g., Abbott and Ionescu, 1967;Aricò and Tucciarelli, 2007;Buntina and Ostapenko, 2008;Schippa and Pavan, 2008;Tucciarelli, 2003;Wang et al, 2000). A recent development is the introduction of discontinuous Galerkin (DG) methods, which can be thought of as a higher-order Godunov method (e.g., Kesserwani et al, 2008Kesserwani et al, , 2009Lai and Khan, 2012;Xing, 2014;Xing and Zhang, 2013).…”
Section: Preissmann Vs Godunovmentioning
confidence: 99%
“…The literature with these two methods is vast, but a reasonable cross section is provided in Table 1. Beyond these two major families, a variety of other schemes have been applied including finiteelement methods (e.g., Szymkiewicz, 1991;Venutelli, 2003), finite-volume methods that do not use the Godunov approach (e.g., Audusse et al, 2004Audusse et al, , 2016Catella et al, 2008;Katsaounis et al, 2004;Mohamed, 2014;Vazquez-Cendon, 1999;Xing and Shu, 2011;Ying et al, 2004), and finitedifference methods that do not apply the Preissmann scheme (e.g., Abbott and Ionescu, 1967;Aricò and Tucciarelli, 2007;Buntina and Ostapenko, 2008;Schippa and Pavan, 2008;Tucciarelli, 2003;Wang et al, 2000). A recent development is the introduction of discontinuous Galerkin (DG) methods, which can be thought of as a higher-order Godunov method (e.g., Kesserwani et al, 2008Kesserwani et al, , 2009Lai and Khan, 2012;Xing, 2014;Xing and Zhang, 2013).…”
Section: Preissmann Vs Godunovmentioning
confidence: 99%
“…Si se trata de canales paralelos o redes de canales, entonces el sistema deberá incluir las ecuaciones de continuidad en los sitios donde un canal se separa en dos o más, y donde se unen dos o más canales. Existe un limitado número de algoritmos para resolver sistemas de canales [2,3,4], sin embargo los mismos han sido de poco alcance ya que solamente resuelven por caudales y profundidades del agua en los canales, sin considerar estructuras para distribución o control del agua. Es común que en un sistema de canales existan estructuras hidráulicas tales como vertedores, compuertas y sifones invertidos.…”
Section: Metodologíaunclassified
“…Este método aproxima la solución iterativamente resolviendo las ecuaciones linealizadas sucesivamente hasta tener convergencia [6]. 4. Las ecuaciones lineales se resuelven con el método Gradiente Biconjugado Estabilizado con Precondicionador (BiCGSTAB por sus siglas en inglés) el cual es apropiado para sistemas lineales, no-simétricos y con matrices dispersas [7].…”
Section: Metodologíaunclassified
“…The SV equations may account for flows of variable widths and depths, for example, in floodplains Beltaos et al, 2012), rivers (Guinot and Cappelaere, 2009), overland flow (Berger and Stockstill, 1995;Ghavasieh et al, 2006;Kirstetter et al, 2016), overpressure in drainage systems (Henine et al, 2014), man-made channels (Zhou, 1995;Sen and Garg, 2002;Sau et al, 2010), vegetation flushing , channel networks (Choi and Molinas, 1993;Camacho and Lees, 1999;Saleh et al, 2013), on benchmarks , interaction with subsurfaces (Pan et al, 2015), or natural settings (Moussa and Bocquillon, 1996a;Wang and Chen, 2003;Roux and Dartus, 2006;Burguete et al, 2008;, including these with curved boundaries (Sivakumaran and Yevjevich, 1987). Discharge and cross-sectional area may conveniently be used instead of velocity and water depth, and the two equations describing mass and momentum in the Saint-Venant system are now written as )…”
Section: Water Flowmentioning
confidence: 99%