Efficient Algorithm for the $k$-Means Problem with Must-Link and Cannot-Link Constraints
Chaoqi Jia,
Longkun Guo,
Kewen Liao
et al.
Abstract:Constrained clustering, such as k-means with instance-level Must-Link (ML) and Cannot-Link (CL) auxiliary information as the constraints, has been extensively studied recently, due to its broad applications in data science and AI. Despite some heuristic approaches, there has not been any algorithm providing a non-trivial approximation ratio to the constrained k-means problem. To address this issue, we propose an algorithm with a provable approximation ratio of O.log k/ when only ML constraints are considered. … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.