With the epidemic growth of online social networks (OSNs), a large scale research on information dissemination in OSNs has been made an appearance in contemporary years. One of the essential researches is influence maximization (IM). Most research adopts community structure, greedy stage, and centrality measures, to identify the influence node set. However, the time consumed in analyzing the influence node set for edge server placement, service migration and service recommendation is ignored in terms of propagation delay. Considering the above analysis, we concentrate on the issue of time-sensitive influence maximization and maximize the targeted influence spread. To solve the problem, we propose a method called, Trilateral Spearman Katz Centralitybased Least Angle Regression (TSKC-LAR) for influential node tracing in social network is proposed. Besides, two algorithms are used in our work to find the influential node in social network with maximum influence spread and minimal time, namely Trilateral Statistical Node Extraction algorithm and Katz Centrality Least Angle Influence Node Tracing algorithm, respectively. Extensive experiments on The Telecom dataset demonstrate the efficiency and influence performance of the proposed algorithms on evaluation metrics, namely, sensitivity, specificity, accuracy, time and influence spread