We propose a novel Mixed-Integer Nonlinear Programming (MINLP) model for sparse optimization based on the polyhedral k-norm. We put special emphasis on the application of sparse optimization in Feature Selection for Support Vector Machine (SVM) classification. We address the continuous relaxation of the problem, which comes out in the form of a fractional programming problem (FPP). In particular, we consider a possible way for tackling FPP by reformulating it via a DC (Difference of Convex) decomposition. We also overview the SVM models and the related Feature Selection in terms of multi-objective optimization. The results of some numerical experiments on benchmark classification datasets are reported.