2019
DOI: 10.48550/arxiv.1906.10093
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

Abstract: We introduce a novel technique to analyse unambiguous Büchi automata quantitatively, and apply this to the model checking problem. It is based on linear-algebra arguments that originate from the analysis of matrix semigroups with constant spectral radius. This method can replace a combinatorial procedure that dominates the computational complexity of the existing procedure by Baier et al. We analyse the complexity in detail, showing that, in terms of the set Q of states of the automaton, the new algorithm runs… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 8 publications
0
1
0
Order By: Relevance
“…As in [3] the algorithm will consist of solving a system of linear equations, split up in two parts. The first part is the basic linear system, which we will describe below, while the second part will add normalising equations in the form of cuts (or pseudo-cuts, if [18] is followed). Since the weights of the edges within SCCs are all on loops, and therefore all have weight 1, this part can be copied verbatim from Baier et al [3].…”
Section: ⊓ ⊔mentioning
confidence: 99%
“…As in [3] the algorithm will consist of solving a system of linear equations, split up in two parts. The first part is the basic linear system, which we will describe below, while the second part will add normalising equations in the form of cuts (or pseudo-cuts, if [18] is followed). Since the weights of the edges within SCCs are all on loops, and therefore all have weight 1, this part can be copied verbatim from Baier et al [3].…”
Section: ⊓ ⊔mentioning
confidence: 99%