We use the color diffusion (CD) algorithm in nonequilibrium (accelerated) ab initio molecular dynamics simulations to determine Ti monovacancy jump frequencies in NaCl-structure titanium nitride (TiN), at temperatures ranging from 2200 to 3000 K. Our results show that the CD method extended beyond the linear-fitting rate-versus-force regime [Sangiovanni et al., Phys. Rev. B 93, 094305 (2016)] can efficiently determine metal vacancy migration rates in TiN, despite the low mobilities of lattice defects in this type of ceramic compound. We propose a computational method based on gamma-distribution statistics, which provides unambiguous definition of nonequilibrium and equilibrium (extrapolated) vacancy jump rates with corresponding statistical uncertainties. The acceleration-factor achieved in our implementation of nonequilibrium molecular dynamics increases dramatically for decreasing temperatures from 500 for T close to the melting point T m , up to 33 000 for T ≈ 0.7 T m .