We consider numerical approximations for a modified phase field crystal model with a strong nonlinear vacancy potential. Based on the invariant energy quadratization approach and stabilized strategies, we develop linear, unconditionally energy stable numerical schemes using the first-order Euler method, the second-order backward differentiation formulas and the second-order Crank-Nicolson method, respectively. We rigorously prove the unconditional energy stability, the mass conservation of these three numerical schemes and carry out error estimates in time for the first-order numerical scheme. Various numerical experiments in 2D and 3D are carried out to validate the accuracy, energy stability, mass conservation, and efficiency of the proposed schemes.