2020
DOI: 10.1007/978-981-15-1420-3_91
|View full text |Cite
|
Sign up to set email alerts
|

Efficient and Scalable Job Recommender System Using Collaborative Filtering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(9 citation statements)
references
References 27 publications
0
8
0
1
Order By: Relevance
“…Hybrid filtering memadukan content dan collaborative filtering, meningkatkan akurasi dan memberikan hasil terbaik dengan mengeksplorasi penerapan sistem rekomendasi pada perekrutan pekerja, mengatasi kelemahan pada sistem yang sudah ada. [5]. Model konseptual dan mengeksplorasi berbagai algoritma CF dalam konteks rekomendasi destinasi wisata, menunjukkan bahwa algoritma Bilateral Variational Autoencoder (BiVAE) unggul dalam kinerja [6].…”
Section: Iunclassified
“…Hybrid filtering memadukan content dan collaborative filtering, meningkatkan akurasi dan memberikan hasil terbaik dengan mengeksplorasi penerapan sistem rekomendasi pada perekrutan pekerja, mengatasi kelemahan pada sistem yang sudah ada. [5]. Model konseptual dan mengeksplorasi berbagai algoritma CF dalam konteks rekomendasi destinasi wisata, menunjukkan bahwa algoritma Bilateral Variational Autoencoder (BiVAE) unggul dalam kinerja [6].…”
Section: Iunclassified
“…In [3], Ravita Mishra and Sheetal Rathi propose a survey of recommendation system models used in important recruitment platform like LinkedIn.…”
Section: State Of the Artmentioning
confidence: 99%
“…However, they use third-party aggregators to fetch the jobs and it is well known that these existing aggregators are not always updated. They cannot fetch jobs directly from the company portals [ 5 ]. Mhamdi et al have designed/devised a job recommendation product that aims to extract meaningful data from job postings on portals.…”
Section: Related Workmentioning
confidence: 99%
“…On evaluating both of these methods, it was concluded that a hybrid system of both of these overcomes the limitations of both of them and increases the efficiency of ranking. Problems of cold start, sparse database, scalability, and lack of trend recommendation [ 5 ] have been eliminated. The proposal is to design a Job Recommender system that prioritizes quality over quantity.…”
Section: Conclusion and Future Scopementioning
confidence: 99%
See 1 more Smart Citation