SrTiO3-based photocatalysts have become widely used due to their excellent properties such as high thermal stability, photocorrosion resistance, and stable structure that can be modified by doping and making composites. In this work, SrTiO3 powder was prepared from Sr(NO3)2 and TiO2 precursors by a simple chemical precipitation method followed by calcination. It was determined that calcination at 900 °C followed by treatment in nitric acid solution produced cubic SrTiO3 particles without the presence of any impurities. In addition, structural, morphology, and energetic characterization using experimental and theoretical aspects are presented. Within the framework of density functional theory, the electronic properties of SrTiO3 have been investigated in the Quantum ESPRESSO software package using the PBE functional under the generalized gradient approximation (GGA). The band structure and density of states were obtained, and the width of the bandgap was determined.