A low-noise photodetector is a basic tool for the research of quantum information processing. We present a specially designed low-noise photoelectric detector with a bandwidth of 130 MHz, using a transimpedance amplification circuit. Based on the detailed calculation of the dependence on each parameter of the detector, a useful method of how to design a low-noise and broadband photodetector is provided. When the optical power is between 1.0 and 16 mW, the photodetector has a good linear response to the injected light. Its electronics noise power is below −77 dBm, which is within the whole bandwidth. When the incident light power is 2 mW, the output noise powers are 10.0, 8.0, and 6.0 dB higher than the corresponding electronics noise within the bandwidth of 1-50, 50-90, and 90-130 MHz, respectively, which is in good agreement with the theoretical prediction. Thus, this photoelectric detector could have good application prospects in quantum communication and an optical cavity locking system.