2019
DOI: 10.1080/10618600.2019.1647215
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Construction of Test Inversion Confidence Intervals Using Quantile Regression

Abstract: Modern problems in statistics tend to include estimators of high computational complexity and with complicated distributions. Statistical inference on such estimators usually relies on asymptotic normality assumptions, however, such assumptions are often not applicable for available sample sizes, due to dependencies in the data and other causes. A common alternative is the use of re-sampling procedures, such as the bootstrap, but these may be computationally intensive to an extent that renders them impractical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 38 publications
(52 reference statements)
0
1
0
1
Order By: Relevance
“…where SD (p random (ϕ)) is the standard deviation σ θ of transition probabilities of k-order dependencies in simulation datasets. Then we could derive a confidence interval with a confidence level 1 − α based on the population mean θ of transition probabilities of k-order dependencies in simulation datasets, as shown in equation ( 11) [52,54,55]…”
Section: Significant K-order Dependencies Mining (Skdm)mentioning
confidence: 99%
“…where SD (p random (ϕ)) is the standard deviation σ θ of transition probabilities of k-order dependencies in simulation datasets. Then we could derive a confidence interval with a confidence level 1 − α based on the population mean θ of transition probabilities of k-order dependencies in simulation datasets, as shown in equation ( 11) [52,54,55]…”
Section: Significant K-order Dependencies Mining (Skdm)mentioning
confidence: 99%
“…El uso de un enfoque sólido como QR hace que la inferencia sea menos sesgada y esté menos sujeta a falsos positivos (2) . En estudios recientes que utilizan QR, se describen aplicaciones diversas como estudios de asociación genética (4) , genética de poblaciones (5) , expresión génica (6,7) y selección genómica (8)(9)(10) . Uno de los primeros estudios donde se utilizó QR para predecir el mérito genético individual lo presentaron Nascimento et al (11) , quienes utilizaron datos simulados encontrando ventajas al usar QR frente a metodologías convencionales.…”
Section: Introductionunclassified