2021
DOI: 10.48550/arxiv.2108.10830
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Efficient diagnostics for quantum error correction

Abstract: Fault-tolerant quantum computing will require accurate estimates of the resource overhead, but standard metrics such as gate fidelity and diamond distance have been shown to be poor predictors of logical performance. We present a scalable experimental approach based on Pauli error reconstruction to predict the performance of concatenated codes. Numerical evidence demonstrates that our method significantly outperforms predictions based on standard error metrics for various error models, even with limited data. … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 51 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?