2016 IEEE Global Communications Conference (GLOBECOM) 2016
DOI: 10.1109/glocom.2016.7841775
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Dictionary Compression for Processing RDF Big Data Using Google BigQuery

Abstract: The Resource Description Framework (RDF) data model, is used on the Web to express billions of structured statements in a wide range of topics, including government, publications, life sciences, etc. Consequently, processing and storing this data requires the provision of high specification systems, both in terms of storage and computational capabilities. On the other hand, cloud-based big data services such as Google BigQuery can be used to store and query this data without any upfront investment. Google BigQ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Among others, they apply existing techniques for compressing string dictionaries, including a compact form of hashing [78,132], Front-Coding [447] (both Plain Front-Coding [78] and Hu-Tucker Front-Coding [272]), and various forms of self-indexing [78,91,179,345]. Moreover, Dawelbeit and McCrindle [137] compress RDF dictionaries that are used in Google BigQuery.…”
Section: Generatingmentioning
confidence: 99%
“…Among others, they apply existing techniques for compressing string dictionaries, including a compact form of hashing [78,132], Front-Coding [447] (both Plain Front-Coding [78] and Hu-Tucker Front-Coding [272]), and various forms of self-indexing [78,91,179,345]. Moreover, Dawelbeit and McCrindle [137] compress RDF dictionaries that are used in Google BigQuery.…”
Section: Generatingmentioning
confidence: 99%
“…Untuk merespons suatu tuntutan pada cloud berdasarkan big data dan analytical, BigQuery menyediakan kemampuan untuk memproses kueri yang besar dari dataset. Google BigQuery digambarkan seperti menyediakan pengelolaan sepenuhnya, NoOps, dan murah biaya dalam menganalisis [7]. BigQuery dapat melakukan pengelolaan data, seperti membuat atau menghapus tabel berdasarkan skema dengan kode JSON, serta mengimpor data dengan jenis CSV atau JSON.…”
unclassified