2020
DOI: 10.1117/1.jrs.14.032611
|View full text |Cite
|
Sign up to set email alerts
|

Efficient dimension reduction of hyperspectral images for big data remote sensing applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 0 publications
0
6
0
1
Order By: Relevance
“…LDA are commonly used. 20,21 LDA is opted for dimensionality reduction of hyperspectral data from 11 to 2 dimensions (indicated by and in Fig. 5a).…”
Section: Among Various Algorithms Available For Dimension Reduction P...mentioning
confidence: 99%
“…LDA are commonly used. 20,21 LDA is opted for dimensionality reduction of hyperspectral data from 11 to 2 dimensions (indicated by and in Fig. 5a).…”
Section: Among Various Algorithms Available For Dimension Reduction P...mentioning
confidence: 99%
“…The data processing pipeline requires a balance in accuracy, run-time and resources usage. Therefore, another measure employed is the Reduction Efficiency Coefficient (REC) [52]. This coefficient measures the reduction performance according to classification OA and the number of features reduced, achieving values near 1 when there is a good classification combined with a high reduction of features:…”
Section: Quality Measuresmentioning
confidence: 99%
“…The lowest value is 0.8863, which is derived from NIR with LDA-SVM. Nevertheless, the κ coefficients can be grouped in categories according to the strength of agreement between the OA and the expected accuracy ensued by chance [52]. The κ values should fall in the categories [0.61, 0.80] and [0.81, 1.00], which correspond to Substantial and Almost perfect, to evaluate a classification as adequate.…”
Section: Classification Overall Accuracy and κ Coefficientmentioning
confidence: 99%
“…Не стоять на місці і технології дистанційного зондування (ДЗ) з аерокосмічних носіїв (рис. 1), які вирішують велику кількість завдань у лісовому господарстві, гідрології, екологічному моніторингу, сільському господарстві [1]. Сучасні засоби ДЗ отримують величезну кількість даних завдяки наступному.…”
Section: вступunclassified